80 | 0 | 5 |
下载次数 | 被引频次 | 阅读次数 |
在极端气候事件频发的背景下,分析松花江流域受气候变化影响,在近30年的地表水体时空变化,对于区域提前采取并优化气候应对措施有重要意义。基于松花江流域1990~2020年地表水体面积时空动态变化特征,对季节性水体归类分析,利用EC JRC全球地表水产品数据集,结合MATLAB软件采用时序特征+K-means聚类与动态统计阈值法,分析松花江流域近30年地表水体面积变化趋势并对季节性水体进行归类分析与极端水文年检测与恢复动态分析。结果表明,研究期间松花江流域季节性水体面积增幅114%,永久性水体面积降幅49.46%,地表水体总面积呈上升趋势;将逐年季节性水体面积划分为波动—丰水年、低波动—枯水年、平稳—平水年3个类别,轮廓系数为0.549,聚类效果良好;识别出1998、2013年两个显著高值年,并分析出均未完全恢复。研究成果为针对松花江流域未来的极端天气提前采取防洪、防涝措施,以及对水资源的有效管理和保护提供了方向。
Abstract:Under the background of frequent extreme climate events, analyzing the spatio-temporal changes of surface water bodies in the Songhua River Basin affected by climate change over the past 30 years is of great significance for the region to take and optimize climate response measures in advance. Based on the spatio-temporal dynamic changes of surface water area in the Songhua River Basin from 1990 to 2020, seasonal water bodies were classified and analyzed. By using the EC JRC global surface water product dataset and combining with MATLAB software, the time series feature +K-means clustering and dynamic statistical threshold method were adopted to analyze the changing trend of surface water area in the Songhua River Basin in the past 30 years, and to classify the seasonal water body area as well as detect and analyze the recovery dynamics of extreme hydrological years. The results show that during the study period, the seasonal water body area in the Songhua River Basin increased by 114%, while the permanent water body area decreased by 49.46%, and the total surface water area showed an upward trend. The annual seasonal water body area was classified into three categories: fluctuating-wet year, low fluctuation-dry year, and stable-normal year, with a silhouette coefficient of 0.549, indicating a good clustering effect. Two significant high-value years, 1998 and 2013, were identified, and it was analyzed that neither had fully recovered. The research results provide a direction for the effective management and protection of water resources by referring to historical extreme hydrological events and making flood and drought prevention preparations in advance for the Songhua River Basin in the face of future extreme weather.
[1] 戴长雷,王思聪,李治军,等.黑龙江流域水文地理研究综述[J].地理学报,2015,70(11):1823-1834.
[2] 鲁芳,刘艳丽,朱士江,等.2020年主汛期我国暴雨洪涝灾害概况分析与初步思考[J].水电能源科学,2022,40(5):68-71,150.
[3] LIU K,ZHANG D P,CHEN T,et al.Monitoring surface water change in Northeast China in 1999-2020:Evidence from satellite observation and refined classification[J].Chinese geographical science,2024,34(1):106-117.
[4] YANG X C,ZHU Z,QIU S,et al.Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series[J].Remote sensing of environment,2022,276:113047.
[5] 袁亚玲,王文鹏,韩蕊,等.黄淮海平原降雨极值特征及致洪危险性分析[J].水电能源科学,2025,43(4):30-34.
[6] 马彩依,曹洪涛,崔铁军,等.京津冀2000—2021年地表水面积时空变化及其影响因素[J].水土保持通报,2024,44(4):309-320.
[7] PEKEL J F,COTTAM A,GORELICK N,et al.High-resolution mapping of global surface water and its long-term changes[J].Nature,2016,540(7633):418- 422.
[8] JAKUBAUSKAS E M,LEGATES R D,KASTENS H J.Crop identification using harmonic analysis of time-series AVHRR NDVI data[J].Computers and electronics in agriculture,2002,37(1):127-139.
[9] IKOTUN A M,EZUGWU A E,ABUALIGAH L,et al.K-means clustering algorithms:A comprehensive review,variants analysis,and advances in the era of big data[J].Information sciences,2023,622:178-210.
[10] VAN DEN BRINK H W,K? NNEN G P.Estimating 10000-year return values from short time series[J].International journal of climatology,2011,31(1):115-126.
[11] SENEVIRATNE S I,ZHANG X,ADNAN M,et al.Weather and climate extreme events in a changing climate[M]//MASSON-DELMOTTE V,et al.Climate Change 2021:The physical science basis.Cambridge:Cambridge University Press,2021:1513-1766.
[12] 王全民,胡德程.基于Spark的K-means快速聚类算法的优化[J].计算机仿真,2022,39(3):344-349.
[13] 王丙参,王国长,魏艳华.基于k-means算法的聚类个数确定方法改进[J].统计与决策,2025,41(7):59-64.
[14] 张霞,王新敏,栗晗,等.基于环境参数的极端暴雨指数构建及其应用[J].气象,2020,46(7):898-912.
[15] 施巧,姜宁,孟凡香,等.基于SPEI的黑龙江省干旱时空分布特征分析[J].水电能源科学,2024,42(3):29-32.
[16] 董明锐.1998丨2013黑土地抗洪记忆[J].中国水利,2016(6):12-15.
基本信息:
DOI:10.20040/j.cnki.1000-7709.2025.20250762
中图分类号:P333
引用信息:
[1]孙腾,戴长雷,孙亚萍等.松花江流域地表水体时空变化归类分析[J].水电能源科学,2025,43(09):25-28+33.DOI:10.20040/j.cnki.1000-7709.2025.20250762.
基金信息:
中国科学院战略重点研究项目(Xda28100105)