102 | 0 | 5 |
下载次数 | 被引频次 | 阅读次数 |
混凝土坝变形的长期预测是实际运行中保持其结构完整性的重要要求。为提高混凝土长期变形预测的准确性,构建了基于多层感知机(MLP)和编码器—解码器(Ecoder-Decoder)架构的大坝变形长期预测模型MLP-Ecoder-Decoder(MED),该模型通过深度自动相关(Deep-Auto-Correlation)机制捕获大坝变形与环境荷载的长期依赖性,利用时间序列分解和深度自动相机制进行多步变形预测,并采用该模型对青海省的一座250 m高拱坝在复杂环境条件下的变形进行预测。结果表明,MED模型有效提升了预测精度,在提取长期时间特征方面具有强大的优势。
Abstract:The long-term prediction of concrete dam deformation is an important requirement for maintaining its structural integrity during actual operation. To improve the accuracy of long-term deformation prediction of concrete, a long-term dam deformation prediction model based on multi-layer perceptron(MLP) and ecoder-decoder(Ecoder-Decoder) architecture, MLP-Ecoder-Decoder(MED), was constructed. This model captured the long-term dependence of dam deformation and environmental loads through a deep auto-correlation(Deep-Auto-Correlation) mechanism, and used time series decomposition and deep auto-correlation mechanism for multi-step deformation prediction. The model was used to predict the deformation of a 250 m height arch dam in Qinghai Province under complex environmental conditions. The results show that the MED model effectively improves the prediction accuracy and has a strong advantage in extracting long-term time features.
[1] 周仁练,苏怀智,韩彰,等.混凝土坝变形的长期预测模型与应用[J].水力发电学报,2021,40(9):122-131.
[2] WEI B W,YUAN D Y,LI H K,et al.Combination forecast model for concrete dam displacement considering residual correction[J].Structural health monitoring,2019,18(1):232-244.
[3] 翁鸣昊,项兴华,陈俊涛,等.基于LSTM与Transformer的大坝变形预测研究[J].中国农村水利水电,2024(4):250-257.
[4] 徐筠雯,陈宗镭,李天瑞,等.基于季节分解的混合神经网络的时间序列预测[J].计算机科学,2024,51(增刊2):553-559.
[5] WU H X,XU J H,WANG J M,et al.Autoformer:Decomposition transformers with auto-correlation for long-term series forecasting[C]//35th Conference on Neural Information Processing Systems (NeurIPS 2021),2021.
[6] 唐利涛,张智勇,陈俊,等.基于Autoformer的电力负荷预测与分析研究[J].华东师范大学学报(自然科学版),2023(5):135-146.
[7] CHEN X D,CHEN Z H,HU S W,et al.A feature decomposition-based deep transfer learning framework for concrete dam deformation prediction with observational insufficiency[J].Advanced engineering informatics,2023,58:102175.
[8] SHOMOPE I,TAWALBEH M,AL-OTHMAN A,et al.Predicting biohydrogen production from dark fermentation of organic waste biomass using multilayer perceptron artificial neural network (MLP-ANN)[J].Computers & chemical engineering,2025,192:108900.
[9] 巨佳丽,武传号,胡晓农,等.基于VIC和MLP-ANN模型重建中国陆地水储量数据[J].水科学进展,2024,35(5):711-725.
基本信息:
DOI:10.20040/j.cnki.1000-7709.2025.20241777
中图分类号:TV698.11;TV642
引用信息:
[1]陶丛丛.基于多层感知机和编码器解码器架构的混凝土坝长期变形预测[J].水电能源科学,2025,43(09):136-140.DOI:10.20040/j.cnki.1000-7709.2025.20241777.
基金信息:
抽水蓄能电站建设期的水工结构动态多维感知与预测预警技术研究(5108-202218280A-2-301-XG)