nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.43 166-170
高水头抽水蓄能电站高压岔管稳定性分析
基金项目(Foundation):
邮箱(Email): zc_chaozhou@163.com;
DOI: 10.20040/j.cnki.1000-7709.2025.20242153
摘要:

广东惠州中洞抽水蓄能电站高压岔管运行期最大水头约800 m,其高内水压下的围岩稳定性对电站安全运行至关重要。为此,开展现场地应力与高压压水试验,联合三维地应力场反演,分析了高压岔管部位的地应力场分布规律、渗透特性及抗劈裂能力,并优化岔管布置。结果表明,高压岔管段最大主应力为15.0~16.6 MPa,最小主应力为8.4~9.7 MPa;岩体渗透率介于0.01~0.19 Lu之间,呈极微—微透水;初设岔管位置满足抗抬和抗渗透要求,但岔管口7 m范围内Ⅲ类岩体洞段受断层影响,不满足工程抗水力劈裂要求;通过围岩条件和抗抬、抗劈裂及抗渗透等因素综合分析,将初设岔管位置向厂房方向平移10 m,平移后可满足抗抬、抗水力劈裂和抗渗透稳定要求。

Abstract:

The maximum water head endured by the floor of the high-pressure branch pipe at the Zhongdong Pumped Storage Power Station in Huizhou, Guangdong, is approximately 800 m during operation. The stability of the surrounding rock under this high internal water pressure is critical to the station's safe operation. To address this, in-situ stress and high-pressure water injection tests were conducted. Combined with three-dimensional in-situ stress field inversion, the stress field distribution, permeability characteristics, and hydraulic fracturing resistance of the high-pressure branch pipe area were analyzed, and the layout of bifurcated pipe was optimized. The results indicate that the maximum principal stress in the high-pressure branch pipe section ranges from 15.0 to 16.6 MPa, and the minimum principal stress ranges from 8.4 to 9.7 MPa. The rock permeability ranges from 0.01 to 0.19 Lu, indicating very low to low permeability. The initial high-pressure branch pipe location meets the stability requirements against uplift and seepage. However, within a 7 m range of the branch pipe opening, the class Ⅲ rock mass segment is affected by faults and does not meet the engineering requirements for hydraulic fracturing resistance. Based on a comprehensive analysis of the surrounding rock conditions, uplift resistance, hydraulic fracturing resistance, and seepage resistance, the initial high-pressure branch pipe location was shifted 10 m toward the powerhouse, which meets the stability requirements for uplift, hydraulic fracturing resistance, and seepage resistance.

参考文献

[1] 李永松,尹健民,艾凯,等.深圳抽水蓄能电站地应力测试分析及其在地下硐室设计中的应用 [J].岩石力学与工程学报,2006,25(增刊2):3965-3970.

[2] 张军,吴俊杰,刘峰.新疆克拉玛依市供水系统工程高压岔管群体型结构整体受力计算三维有限元优化分析 [J].水电能源科学,2020,38(8):83-86.

[3] 吴俊杰,杨雪莲,陈显龙.阿尔塔什高压混凝土岔管透水理论配筋设计 [J].水利规划与设计,2022(12):115-119.

[4] 邓柏旺.地下钢筋混凝土高压岔管围岩稳定与衬砌结构分析[D].南京:河海大学,2007.

[5] 李永松,尹健民,艾凯.阳江抽水蓄能电站高压隧洞稳定性分析[J].人民长江,2009,40(9):68-70.

[6] 袁国庆,施裕兵.400 m级高水头隧洞岩体抬动劈裂及渗透研究[J].地下空间与工程学报,2017,13(增刊2):865-871.

[7] 耿必君,任鑫,张祥富,等.抽水蓄能电站地下厂房区地应力测试研究[J].人民珠江,2020,41(9):46-52.

[8] 柏正林,黄运龙,谢文涛.某抽水蓄能电站高压岔管区围岩水力劈裂机理分析 [J].勘察科学技术,2022(2):38-42.

[9] 韩国强,白云哲,柯雄.高压压水试验在某抽水蓄能电站工程中的应用[J].电力勘测设计,2023(增刊2):193-197.

[10] 韩晓玉,郑炜烽,董志宏,等.高水头抽水蓄能电站地应力综合测试及抗劈裂分析[J].岩土力学,2024,45(7):2167-2174.

[11] 国家能源局.水电工程钻孔压水试验规程:NB/T 35113-2018[S].北京:中国电力出版社,2018.

[12] 周朝,尹健民,董志宏,等.考虑边界荷载作用方向的特长隧道初始应力场分区反演方法[J].岩石力学与工程学报,2022,41(增刊1):2725-2734.

[13] 中华人民共和国水利部.水工隧洞设计规范:SL 279-2016[S].北京:中国水利水电出版社,2016.

基本信息:

DOI:10.20040/j.cnki.1000-7709.2025.20242153

中图分类号:TV732.4

引用信息:

[1]冯鲲鹏,吕城腾,谢海峰等.高水头抽水蓄能电站高压岔管稳定性分析[J].水电能源科学,2025,43(09):166-170.DOI:10.20040/j.cnki.1000-7709.2025.20242153.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文