nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.43 119-122+105
基于SSA-KMIF的船闸人字门监测数据异常检测方法
基金项目(Foundation): 江苏省交通运输科技项目(2020QD28)
邮箱(Email): ljzhang@hhu.edu.cn;
DOI: 10.20040/j.cnki.1000-7709.2025.20250723
摘要:

针对孤立森林算法固定阈值导致复杂工况下检测准确度降低的问题,提出一种基于奇异谱分析(SSA)与改进孤立森林(KMIF)的船闸人字门监测数据异常检测方法。利用SSA对监测数据进行分解与重构,分离趋势项和噪声项;引入K-Means++改进孤立森林算法(IF),动态设定不同监测数据集的异常阈值;将噪声项输入改进的孤立森林算法进行训练并检测异常值。以江苏船闸工程下闸首人字门的多测点应力、振动数据为对象进行实例验证。结果表明,提出的奇异谱分析-改进孤立森林方法(SSA-KMIF)在误检率、查准率、查全率和准确率指标上表现优异,具有较高准确性和灵活性,可为船闸人字门健康监测提供可靠技术支撑。

Abstract:

To address the issue of reduced detection accuracy under complex working conditions due to the fixed threshold of the isolation forest algorithm, an anomaly detection method for ship lock miter gate monitoring data based on singular spectrum analysis(SSA) and an improved isolation forest(KMIF) is proposed. The SSA is employed to decompose and reconstruct the monitoring data, and separate the trend and noise components. The isolation forest algorithm is improved by incorporating K-Means++ clustering to dynamically set anomaly thresholds for different monitoring datasets. The noise component is then fed into the improved isolation forest algorithm for training and anomaly detection. Taking the stress and vibration data from multiple measuring points of the lower lock miter gate in Jiangsu ship gate project as an example for validation, the results show that the proposed SSA-KMIF method performs excellently in terms of false positive rate, precision, recall ratio, and accuracy. It demonstrates high accuracy and flexibility, which provides a reliable technical support for health monitoring of ship lock miter gates.

参考文献

[1] 万可,喻瑾,于俊生.航运枢纽工程船闸闸门启闭机设计分析[J].珠江水运,2024(3):82-84.

[2] LIU F T,TING K M,ZHOU Z H.Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining,15-19 December 2008,Pisa,Italy.2008:413-422.

[3] 徐浩,刘怀利,瞿暄.基于孤立森林的取水数据异常值检测[J].水电能源科学,2024,42(9):29-32,59.

[4] 赵新华,范振东,何宇,等.基于数据重构与孤立森林法的大坝自动化监测数据异常检测方法[J].中国农村水利水电,2021(9):174-178.

[5] ARTHUR D,VASSILVITSKII S.K-Means++:The advantages of careful seeding [C] // Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,SODA 2007.

[6] 闫孟婷,陶湘明,王胜军,等.基于SSA-LSTM模型的水电站能效综合评价方法[J].水电能源科学,2024,42(2):177-182.

[7] LIU F T,TING K M,ZHOU Z-H.Isolation-based anomaly detection[J].ACM transactions on knowledge discovery from data,2012,6(1):1-39.

[8] 张燎军.船闸人字门全工况仿真模拟与计算理论深化研究[R].南京:河海大学,2025.

[9] 杭震,彭浩,曹文卓,等.船闸浮式系船柱运行状态检测方法研究[J].机电工程技术,2022,51(12):156-159,193.

[10] BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:Identifying density-based local outliers[J].ACM SIGMOD record,2000,29(2):93-104.

基本信息:

DOI:10.20040/j.cnki.1000-7709.2025.20250723

中图分类号:U641.8

引用信息:

[1]肖于思,马翔宇,张燎军.基于SSA-KMIF的船闸人字门监测数据异常检测方法[J].水电能源科学,2025,43(09):119-122+105.DOI:10.20040/j.cnki.1000-7709.2025.20250723.

基金信息:

江苏省交通运输科技项目(2020QD28)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文