69 | 0 | 20 |
下载次数 | 被引频次 | 阅读次数 |
为解决非线性径流序列及单一预测模型稳定性差导致的预测精度下降问题,在“分解—预测”模型的基础上,提出了一种“优选—组合—修正”模型构建策略,首先选择DNN、SVM、LSTM、TCN、GBRT 5种模型,建立了基于EMD、CEEMDAN、VMD的15种耦合模型,并对模型进行优选;其次将优选出的模型作为基础模型,并将基础模型各时期的预测结果进行处理,输入多层感知机,构建新的组合模型;然后针对组合模型的测试期构建残差修正方程,进一步提高模型预测精度;最后将其应用于渭河流域华县站和汉江流域洋县站测试研究中。结果表明,多层感知机构建的组合模型相比单一模型有更高的预测精度,并能够结合其他模型的优点,提高模型泛化能力。通过残差修正技术的模型在各方面均优于组合模型,尤其在径流峰值拟合效果上进一步提高了预测精度。
Abstract:To solve the problem of decreasing prediction accuracy caused by nonlinear runoff sequence and instability of single prediction model, this paper proposes a "selection-combination-correction" modeling strategy based on the "decomposition-prediction" model. Firstly, five models including DNN, SVM, LSTM, TCN, and GBRT are used to establish 15 coupled models based on EMD, CEEMDAN, and VMD, and the models are selected. Then, the selected model is used as the base model, and the predicted results of each period of the base model are processed and input into a multi-layer perceptron to construct a new combination model. A residual correction equation is constructed for the test period of the combination model to further improve the prediction accuracy. Finally, the method is applied to the test studies of Huaxian Station in Weihe River Basin and Yangxian Station in Hanjiang River Basin. The results show that the combination model constructed by the multi-layer perceptron has higher prediction accuracy than the single model, and can integrate the advantages of other models to improve the model's generalization ability. The model with residual correction technology is superior to the combination model in all aspects, especially in the fitting of peak discharge, further improving the prediction accuracy.
[1] 陈克宇.变化环境下河川径流中长期规律与预测研究——以陕西省典型流域为例[D].西安:长安大学,2015.
[2] 张力,王红瑞,郭琲楠,等.基于时序分解与机器学习的非平稳径流序列集成模型与应用[J].水科学进展,2023,34(1):42-52.
[3] 梁浩,黄生志,孟二浩,等.基于多种混合模型的径流预测研究[J].水利学报,2020,51(1):112-125.
[4] 张上要,罗军刚,石国栋,等.基于VMD-TCN模型的渭河流域月径流量预测研究[J].人民黄河,2023,45(10):25-29.
[5] 夏润亮,刘启兴,李涛,等.基于集成学习的黄河未控区径流预测研究[J].应用基础与工程科学学报,2020,28(3):740-749.
[6] 周婷,温小虎,冯起,等.基于BMA多模型组合的疏勒河径流预测研究[J].冰川冻土,2022,44(5):1606-1619.
[7] 王文川,李文锦,徐冬梅,等.基于马尔可夫链校正GM-BP模型的径流预测[J].南水北调与水利科技,2019,17(5):44-49.
[8] 杨文忠,张志豪,吾守尔·斯拉木,等.基于时间序列关系的GBRT交通事故预测模型[J].电子科技大学学报,2020,49(4):615-621.
[9] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
[10] ASEFA T,KEMBLOWSKI M,MCKEE M,et al.Multi-time scale stream flow predictions:The support vector machines approach[J].Journal of hydrology,2006,318(1/2/3/4):7-16.
[11] 王鑫,吴际,刘超,等.基于LSTM循环神经网络的故障时间序列预测[J].北京航空航天大学学报,2018,44(4):772-784.
[12] BAI S J,KOLTER J Z,KOLTUN V.Trellis networks for sequence modeling[EB/OL] https://arxiv.org/abs/1810.06682v2,2018:1810.
[13] 鲍振鑫,张建云,王国庆,等.基于水文模型与机器学习集合模拟的水沙变异归因定量识别——以黄河中游窟野河流域为例[J].水科学进展,2021,32(4):485-496.
[14] 韩玲.基于人工神经网络——多层感知器(MLP)的遥感影像分类模型[J].测绘通报,2004(9):29-30,42.
基本信息:
DOI:10.20040/j.cnki.1000-7709.2025.20242186
中图分类号:P338
引用信息:
[1]王许彭,罗军刚,董洪涛等.基于“优选—组合—修正”策略的月径流预测模型研究[J].水电能源科学,2025,43(09):1-5.DOI:10.20040/j.cnki.1000-7709.2025.20242186.
基金信息: