nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.43 203-207
回水顶托效应下巨型水电站下游水位预测研究
基金项目(Foundation): 国家自然科学基金项目(52479017,52179016); 中国长江电力股份有限公司资助(Z242302051)
邮箱(Email): zqjzq@hust.edu.cn;
DOI: 10.20040/j.cnki.1000-7709.2025.20241784
摘要:

水电站的尾水水位是计算机组出力的重要参数,当存在下游水库顶托影响时,电站尾水的设计曲线与实际观测值往往存在较大误差,增加了机组出力—流量的计算误差。为此,根据最新历史观测数据,分析了BHT水电站尾水水位与其出库流量及下游水库XLD顶托水位的关系,建立了基于多情景划分的贝叶斯优化-长短期记忆网络(BO-LSTM)预测模型,并分析了调峰和泄洪工况下模型的应用效果。结果表明,XLD水位高于585 m后对BHT电站的尾水水位有显著的顶托影响。相比于水位—流量曲线和非线性曲线拟合方法,基于多情景划分的BO-LSTM模型在精度上有显著提升,平均绝对误差(MMAE)降低了68.1%。BO-LSTM模型在多种工况下均能更准确地捕捉水位的起伏变化过程。研究结果对水电站精细化调度具有重要意义。

Abstract:

The tailwater level of hydropower station is a critical parameter for calculating the unit's output. When influenced by the downstream reservoir's backwater effect, discrepancies often arise between the designed tailwater curve and the actual observed values, leading to increased errors in the output-flow calculations. Utilizing the latest historical observation data, this study explores the relationship between the tailwater level of BHT Hydropower Station, its discharge, and the water level of the downstream XLD Reservoir. A Bayesian optimized long short-term memory(BO-LSTM) prediction model is developed based on multi-scenario analysis. The applied effect is analyzed under conditions of peak load and flood discharge. The results indicate that when the water level of XLD exceeds 585 meters, the tailwater level of BHT Hydropower Station is significantly influenced. Compared to the nonlinear curve fitting method, the BO-LSTM model based multi-scenario analysis demonstrates a substantial improvement in accuracy, with an average absolute error(MMAE) reduced by 68.1%. The BO-LSTM model more accurately captures the fluctuations and changes in water levels under various operating conditions. The research results have important significant for refined operation of hydropower stations.

参考文献

[1] 张勇传.水电站经济运行原理[M].2版.北京:中国水利水电出版社,1998.

[2] 贾本军,周建中,陈潇,等.水电站尾水位特性解析与建模[J].水力发电学报,2021,40(10):45-59.

[3] 曹辉,张继顺,董先勇,等.白鹤滩水电站受溪洛渡水电站回水顶托影响的分析[J].水力发电,2017,43(12):65-67,75.

[4] 何中政,钱伟,傅春,等.基于逐步回归分析的峡江水库对吉安水位顶托作用量化分析[J].中国农村水利水电,2024(7):53-59.

[5] HUANG J W,QIN H,ZHANG Y C,et al.Short-term prediction method of reservoir downstream water level under complicated hydraulic influence[J].Water resources management,2023,37(11):4475-4490.

[6] SHAO Q X,DUTTA D,KARIM F,et al.A method for extending stage-discharge relationships using a hydrodynamic model and quantifying the associated uncertainty[J].Journal of hydrology,2018,556:154-172.

[7] 柳俊,李匡,黄存宇,等.有尾水位顶托的上下游水电站的水位影响分析与控制方法[J].水电与新能源,2021,35(8):31-35.

[8] 李俊聪,张勇传,覃晖,等.锦东—官地梯级水电站短期调度中的电站间流量响应关系研究[J].水电能源科学,2023,41(7):75-79.

[9] 刘晓阳,郭乐.基于机器学习方法的葛洲坝水电站下游水位预测研究[J].水利水电快报,2022,43(10):19-22,36.

[10] 刘晓阳,姚华明,张海荣,等.基于机器学习的三峡水库小时尺度坝前水位预测[J].人民长江,2023,54(2) :147-151.

基本信息:

DOI:10.20040/j.cnki.1000-7709.2025.20241784

中图分类号:TV72

引用信息:

[1]彭旺,姚华明,蒋志强等.回水顶托效应下巨型水电站下游水位预测研究[J].水电能源科学,2025,43(09):203-207.DOI:10.20040/j.cnki.1000-7709.2025.20241784.

基金信息:

国家自然科学基金项目(52479017,52179016); 中国长江电力股份有限公司资助(Z242302051)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文