nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.43 198-202
抽水蓄能电站地下厂房施工期通风系统对比
基金项目(Foundation): 地下洞室群高效通风散废降温技术研究(ZSWJ-天台项目-研发-[2024]-01号)
邮箱(Email): renxiaofen@stdu.edu.cn;
DOI: 10.20040/j.cnki.1000-7709.2025.20241989
摘要:

为了改善抽水蓄能电站地下厂房施工期工作面环境,基于射流理论、负压通风理论和柱状涡旋原理,针对浙江省天台抽水蓄能电站地下厂房工程建立了湍流κ-ε数学模型,模拟并对比了正压通风、负压通风及涡旋通风系统的通风效果,评估了3种通风系统在地下厂房中的除尘性能。结果表明,在正压通风和负压通风条件下,厂房内粉尘浓度下降至4 mg/m3所需时间均超过30 min,正压通风系统除尘率为91.1%,负压通风系统除尘率为93.6%。相较之,涡旋通风系统下厂房内粉尘浓度降至4 mg/m3仅需10 min,除尘率可达98.7%。涡旋通风系统在地下厂房中的应用显著优于正压通风和负压通风系统,能够在更短的时间内有效降低粉尘浓度,提升施工环境的空气质量,改善工作环境,提高施工效率。

Abstract:

To enhance the working environment during the construction phase of the underground powerhouse of Tiantai pumped storage power station of Zhejiang Province, based on the jet theory, negative pressure ventilation theory and the principle of cylindrical vortex, this study establishes a turbulent κ-ε mathematical model specifically for this project. The ventilation effects of positive pressure ventilation, negative pressure ventilation, and vortex ventilation systems are simulated to assess their dust removal performance in the underground powerhouse. The results show that under both positive and negative pressure ventilation conditions, it takes over 30 minutes for the dust concentration inside the powerhouse to decrease to 4 mg/m3. Specifically, the dust removal rate of the positive pressure ventilation system stands at 91.1%, while that of the negative pressure ventilation system is 93.6%. In contrast, vortex ventilation system reduces the dust concentration to 4 mg/m3 in just 10 minutes, boasting a dust removal rate of 98.7%. The vortex ventilation system significantly outperforms positive and negative pressure ventilation systems in underground powerhouses. It effectively lowers dust concentration in a shorter timeframe, elevates the air quality of the construction environment, ameliorates the working conditions, and enhances construction efficiency.

参考文献

[1] 李浩天.抽水蓄能电站地下厂房施工工序及通风策略研究[D].北京:北京建筑大学,2021.

[2] 史俊杰,胡代清,郭建强,等.抽水蓄能电站地下厂房施工有毒有害气体运移规律及通风系统优化研究[J].水电能源科学,2018,36(12):163-166,91.

[3] 费万堂,马雨峰,王兰普,等.高寒地区抽水蓄能电站地下厂房施工期通风、保暖、散烟系统研究[J].水利水电技术,2017,48(4):90-98.

[4] LI J X,LI A G,ZHANG C,et al.Analysis and optimization of air distribution and ventilation performance in a generator hall using an innovative attached air supply mode[J].Building and environment,2022,216:108993.

[5] ZHANG Z Q,ZHAO Y,ZHANG H,et al.Experimental and numerical study on airflow-dust migration behavior in an underground cavern group construction for cleaner production[J].Tunnelling and underground space technology,2024,144:105558.

[6] CHANG X K,CHAI J R,LUO J P,et al.Tunnel ventilation during construction and diffusion of hazardous gases studied by numerical simulations[J].Building and environment,2020,177:106902.

[7] 刘显晨,曹智翔,曹莹雪,等.涡旋通风技术在赤泥压滤车间的应用[J].轻金属,2023(9):51-54.

[8] 王萌.涡旋侧吸排风罩的流场特性及污染物捕集效果研究[D].西安:西安建筑科技大学,2019.

基本信息:

DOI:10.20040/j.cnki.1000-7709.2025.20241989

中图分类号:TV731.6;TV743;TV735

引用信息:

[1]卢晓鹏,郑文全,曹子浩等.抽水蓄能电站地下厂房施工期通风系统对比[J].水电能源科学,2025,43(08):198-202.DOI:10.20040/j.cnki.1000-7709.2025.20241989.

基金信息:

地下洞室群高效通风散废降温技术研究(ZSWJ-天台项目-研发-[2024]-01号)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文