nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.43 166-170
基于熵产理论的侧式进/出水口流态特性及水头损失研究
基金项目(Foundation):
邮箱(Email):
DOI: 10.20040/j.cnki.1000-7709.2025.20241147
摘要:

进/出水口为抽水蓄能电站引导水流和拦截污物的重要组成部分,但其内部流动损失分布规律尚不明确。基于新疆某抽水蓄能电站侧式进/出水口进行CFD模拟,将Liutex涡识别理论和熵产率相结合,阐述了侧式进/出水口的流态特性及其与熵产率间的内在联系,揭示了内流场熵产率与水头损失的分布规律。结果表明,入流工况时,流道内水头损失集中在防涡梁段和扩散段末端,流量较小时熵产率分布主要受內流场的涡结构影响,流量变大后熵产率分布集中在近壁面区域,近壁面能量损失为水头损失的主体部分。研究结果能为抽水蓄能电站侧式进/出水口细部结构优化设计提供依据。

Abstract:

The inlet/outlet is an important component for guiding water flow and intercepting the dirt in pumped storage power stations, but the distribution law of the internal flow head loss is not clear. Based on the CFD simulation of the side inlet and outlet of a pumped-storage plant in Xinjiang, this paper expounds the flow characteristics of the side inlet and outlet and its internal relationship with the entropy production rate by combining the Liutex vortex identification theory with the entropy production rate. The distribution laws of entropy production rate and head loss in the internal flow field have been revealed. The results show that under the inflow condition, the head loss in the flow channel is concentrated at the end of the anti-vortex beam section and the diffusion section. When the flow is small, the distribution of entropy production rate is mainly affected by the vortex structure in the internal flow field, and the distribution of entropy production rate is concentrated in the near-wall area after the flow rate becomes larger, and the energy loss near the wall accounts for the main part. This study can provide the basis for the optimization of the detailed structure of the side inlet and outlet of the pumped storage power station.

参考文献

[1] 张晓曦,程永光,刘畅.抽水蓄能电站竖式进/出水口CFD水力优化[J].水力发电学报,2012,31(2):87-94.

[2] 杨小亭,张强,邓朝晖.抽水蓄能电站进出水口模型试验[J].武汉大学学报(工学版),2007,40(1):66-68,119.

[3] 高学平,陶文杰,朱洪涛,等.侧式进/出水口水头损失系数多元线性回归分析[J].水力发电学报,2024,43(4):50-61.

[4] 高学平,刘永朋,孙博闻,等.侧式进/出水口扩散出流紊动强度变化规律研究[J].水利水电技术,2020,51(3):91-100.

[5] LIU C Q,GAO Y S,TIAN S L,et al.Rortex—a new vortex vector definition and vorticity tensor and vector decompositions[J].Physics of fluids,2018,30(3):035103.

[6] GAO Y S,LIU C Q.Rortex and comparison with eigenvalue-based vortex identification criteria[J].Physics of fluids,2018,30(8):085107.

[7] LIU C Q,GAO Y S,DONG X R,et al.Third generation of vortex identification methods:Omega and Liutex/Rortex based systems[J].Journal of hydrodynamics,2019,31(2):205-223.

[8] WANG H B,ZHOU D Q,GUO J X,et al.Analysis of hydraulic losses in vortex rope inside the draft tube of francis pump-turbine based on entropy production theory[J].Machines,2023,11(10):965.

[9] 虎周平,王文全.不同偏流角下潮流能水轮机水动力特性与熵产率分析[J].水电能源科学,2022,40(2):177-181.

[10] 谌诚,赵建钧,安建峰.抽水蓄能电站同发同抽工况下漩涡特性的研究[J].水电能源科学,2019,37(5):145-148,155.

[11] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA journal,1994,32(8):1598-1605.

[12] QIAN Z D,WU P F,GUO Z W,et al.Numerical simulation of air entrainment and suppression in pump sump[J].Science China technological sciences,2016,59(12):1847-1855.

[13] KOCK F,HERWIG H.Entropy production calculation for turbulent shear flows and their implementation in cfd codes[J].International journal of heat and fluid flow,2005,26(4):672-680.

[14] 刘超群.Liutex-涡定义和第三代涡识别方法[J].空气动力学学报,2020,38(3):413-431,478.

基本信息:

DOI:10.20040/j.cnki.1000-7709.2025.20241147

中图分类号:TV743;TV135

引用信息:

[1]刘合睿,邵明磊,刘洁玉.基于熵产理论的侧式进/出水口流态特性及水头损失研究[J].水电能源科学,2025,43(08):166-170.DOI:10.20040/j.cnki.1000-7709.2025.20241147.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文