104 | 0 | 21 |
下载次数 | 被引频次 | 阅读次数 |
冻融损伤是寒区混凝土破坏的主要形式之一,合理计算不同深度冻融循环次数和损伤是评价混凝土构件耐久性和安全性的依据。为了得到混凝土构件不同深度处的年冻融循环次数及损伤分布规律,基于传热学基本原理构建了混凝土板温度场解析解模型,通过实例分析混凝土板内部不同深度处的温度变化规律。结果表明,导温系数为0.003 m2/h时,混凝土板表面的年冻融循环次数为144次,而深度为0.5 m处的年冻融循环次数仅6次,不同深度处的降温速率及年冻融循环次数随着混凝土板深度的增大而减小;混凝土板的冻融损伤主要发生在表层,深度为0.2 m以下的区域几乎无冻融损伤。
Abstract:Freeze-thaw damage is one of the main forms of concrete damage in cold areas. Reasonable calculation of freeze-thaw cycles and damage at different depths is the basis for evaluating the durability and safety of concrete components. In order to obtain the annual freeze-thaw cycles and damage distribution law of concrete members at different depths, an analytical solution model of the temperature field of concrete slabs was established based on the basic principle of heat transfer. The temperature variation law at different depths of concrete slabs was studied by case analysis. The results show that when the temperature conductivity is 0.003 m2/h, the annual freeze-thaw cycles on the surface of the concrete slab are 144 times, while the annual freeze-thaw cycles at the depth of 0.5 m are only 6 times. The cooling rate and the annual freeze-thaw cycles at different depths decrease with the increase of the depth of the concrete slab. The freeze-thaw damage of concrete slab mainly occurs in the surface layer, and there is almost no freeze-thaw damage in the area below 0.2 m depth.
[1] 黄士元.21世纪初期我国混凝土技术发展中的几个重点问题[J].混凝土,2002(3):3-7.
[2] ZHANG J G,GUAN Y H,FAN C Q,et al.Experimental and theoretical investigations on the damage evolution of the basalt fiber reinforced concrete under freeze-thaw cycles[J].Construction and building materials,2024,422:135703.
[3] 方小婉,姚汝方,于峰,等.配合比参数对混凝土硫酸盐冻融破坏的影响[J].水电能源科学,2020,38(1):123-126,103.
[4] 武海荣,金伟良,延永东,等.混凝土冻融环境区划与抗冻性寿命预测[J].浙江大学学报(工学版),2012,46(4):650-657.
[5] 刘西拉,唐光普.现场环境下混凝土冻融耐久性预测方法研究[J].岩石力学与工程学报,2007,26(12):2412-2419.
[6] 中华人民共国住房和城乡建设部.既有混凝土结构耐久性评定标准:GB/T 51355-2019[S].北京:中国建筑工业出版社,2019.
[7] 雷柯夫A B.热传导理论[M].裘烈钧,丁履德,译.北京:高等教育出版社,1955.
[8] 刘照球.混凝土结构表面对流换热研究[D].上海:同济大学,2006.
[9] 欧祖敏,孙璐,程群群.基于气象资料的无砟轨道温度场计算与分析[J].铁道学报,2014,36(11):106-112.
[10] 曾润忠,张佳,胡文韬,等.CRTS Ⅲ型无砟轨道板内温度场演化特征研究[J].铁道标准设计,2022,66(3):35-41.
[11] 中华人民共和国住房和城乡建设部.民用建筑热工设计规范:GB 50176-2016[S].北京:中国建筑工业出版社,2017.
[12] 中华人民共和国水利部.水工混凝土试验规程:SL 352-2006[S].北京:中国水利水电出版社,2006.
[13] 蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学,1998.
[14] 刘志勇,马立国.高强混凝土的抗冻性与寿命预测模型[J].工业建筑,2005,35(1):11-14.
[15] 李金玉,彭小平,邓正刚,等.混凝土抗冻性的定量化设计[J].混凝土,2000(12):61-65.
基本信息:
DOI:10.20040/j.cnki.1000-7709.2025.20241192
中图分类号:TU37
引用信息:
[1]李博,李宗利,王云龙等.混凝土板内冻融循环次数及损伤分布规律研究[J].水电能源科学,2025,43(08):74-78.DOI:10.20040/j.cnki.1000-7709.2025.20241192.
基金信息:
国家重点研发计划(2017YFC405101)