nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.43 123-126+118
基于线性可加模型的渡槽变形预测对比
基金项目(Foundation): 基于信息驱动的水库大坝安全风险态势管控平台研究的项目(ZS1003062024)
邮箱(Email): zzhtbb@163.com;
DOI: 10.20040/j.cnki.1000-7709.2025.20241994
摘要:

渡槽是引调水工程中常见的输水建筑物,准确预测渡槽变形对于确保水利工程稳定运行至关重要。为此,以南水北调工程中的潦河渡槽为例,基于渡槽长期变形监测数据建立弹性网回归、多元线性回归、逐步回归、岭回归和LASSO回归5种不同线性可加模型,并采用5种不同线性可加模型对渡槽变形行为的预测结果进行比较。结果表明,随着预测时间增加,不同线性可加模型预测精度均呈现逐渐下降的趋势;LASSO模型通过交叉验证选择最优正则化参数,实现变量选择精简化,模型复杂度降至最低;同时验证了训练长度会对多元线性回归和逐步回归的预测效果产生影响。研究结果可为选择渡槽变形预测模型提供一些有益的参考。

Abstract:

Aqueducts are common water conveyance structures in water diversion projects, and accurate prediction of aqueduct deformation is crucial for ensuring the stable operation of water conservancy projects. For this purpose, taking the Liaohe Aqueduct in the South-to-North Water Diversion Project as an example, five different linear additive models, namely elastic net regression, multiple linear regression, stepwise regression, ridge regression and LASSO regression, were established based on the long-term deformation monitoring data of the aqueduct. The prediction results of the aqueduct's deformation behavior by the five different linear additive models were compared. The results indicate that as the prediction time increases, the prediction accuracy of different linear additive models gradually decreases. The LASSO model selects the optimal regularization parameter through cross-validation, achieving variable selection simplification and minimizing model complexity. Additionally, it is verified that the training length affects the prediction performance of multiple linear regression and stepwise regression. The findings of this study provide valuable references for selecting prediction model of aqueduct deformation.

参考文献

[1] 朱伟,付柯锦,李红艳,等.南水北调中线水源地水生态与经济发展适配性——以南阳市为例[J/OL].南水北调与水利科技(中英文).https://link.cnki.net/urlid/13.1430.tv.20241010.1623.006.

[2] 张建伟,曹克磊,赵瑜,等.基于流固耦合模型的U型渡槽模态分析及验证[J].农业工程学报,2016,32(18):98-104.

[3] 王嵛,黄耀英,刘钰,等.大型渡槽实测钢筋应力定量与可靠性分析[J].长江科学院院报,2019,36(11):21-26.

[4] 吴中如,沈长松,阮焕祥.论混凝土坝变形统计模型的因子选择[J].河海大学学报,1988,16(6):1-9.

[5] 张建中,顾冲时,袁冬阳,等.基于优化VMD与GRU的混凝土坝变形预测模型[J].水利水电科技进展,2023,43(5):38-44.

[6] 程乐群,陈龙,顾冲时.碾压混凝土坝变形监控模型研究[J].水电能源科学,2008,26(1):107-110.

[7] 朱赵辉,刘健,李新,等.基于稳健估计的大坝变形监测统计模型分析[J].中国水利水电科学研究院学报,2018,16(2):105-112.

[8] 何鲜峰,顾冲时,谷艳昌.分形-混沌混合预测模型在大坝安全监测中的应用[J].武汉大学学报(工学版),2008,41(1):45-49.

[9] SALAZAR F,TOLEDO M A,O?ATE E,et al.An empirical comparison of machine learning techniques for dam behaviour modelling[J].Structural safety,2015,56:9-17.

[10] 顾冲时,汪亚超,彭妍,等.大坝安全监控模型的病态问题及其处理方法[J].中国科学:技术科学,2011,41(12):1574-1579.

[11] 吴子安.大坝变形监测数据回归分析中的因子选择[J].武汉测绘科技大学学报,1993,18(1):20-26.

[12] 罗璐,李志,张启灵.大坝变形预测的最优因子长短期记忆网络模型[J].水力发电学报,2023,42(2):24-35.

[13] ZOU H,HASTIE T.Regularization and variable selection via the elastic net[J].Journal of the royal statistical society series B:Statistical methodology,2005,67(2):301-320.

[14] 田果,杨宜平.面板数据固定效应线性回归模型的变量选择[J/OL].山西大学学报(自然科学版).https://doi.org/10.13451/j.sxu.ns.2024023.

[15] 魏巍,王星惠,陈晓星.基于弹性网的两阶段模型平均方法及应用研究[J].哈尔滨师范大学自然科学学报,2022,38(6):47-53.

[16] 江守燕,赵林鑫,杜成斌,等.基于多元线性回归的渡槽变形预测模型研究[J].三峡大学学报(自然科学版),2020,42(2):12-17.

[17] KENNETH TAY J,NARASIMHAN B,HASTIE T.Elastic net regularization paths for all generalized linear models[J].Journal of statistical software,2023,106:1.

基本信息:

DOI:10.20040/j.cnki.1000-7709.2025.20241994

中图分类号:TV672.3;TV698.11

引用信息:

[1]邓树森,朱赵辉,吴浩等.基于线性可加模型的渡槽变形预测对比[J].水电能源科学,2025,43(09):123-126+118.DOI:10.20040/j.cnki.1000-7709.2025.20241994.

基金信息:

基于信息驱动的水库大坝安全风险态势管控平台研究的项目(ZS1003062024)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文