102 | 0 | 28 |
下载次数 | 被引频次 | 阅读次数 |
极端降雨与面源污染引起的城市水问题日益突出,在雨水基础设施建设和运行过程中,调蓄池的优化配置与调控对减少泵站耗能、降低雨水径流污染、提高运行效率等方面具有重要意义。对此,梳理了雨水调蓄池关键参数设计程序及优化方法;识别了多目标雨水调蓄池区域优化配置关键路径;模型预测控制策略(MPC)的不确定性、动态风险评估控制策略(DORA)变量的控制、深度强化学习控制策略(DRL-RTC)的数据校准与可解释性,是当前实时控制面临的主要难点。研究结果可为构建暴雨实时控制系统及投资环境效益比最优化体系提供参考。
Abstract:Urban water issues caused by extreme rainfall and non-point source pollution are becoming increasingly prominent. In the construction and operation of stormwater infrastructure, optimization configuration and regulation of storage tanks is essential for reducing energy consumption at pump stations, mitigating stormwater runoff pollution, and enhancing operational efficiency. This paper outlines the design procedures and optimization methods for the key parameters of stormwater storage tanks, and identifies the critical paths for the regional optimization configuration of multi-objective storage tanks. The uncertainties of model predictive control strategies(MPC), the control of variables in dynamic risk assessment control strategies(DORA), and the data calibration and interpretability in deep reinforcement learning control strategies(DRL-RTC) are the main challenges faced in real-time control at present. The findings offer references for establishing real-time control systems for heavy rainfall and optimizing the investment-environment benefit ratio.
[1] 任南琪,张建云,王秀蘅.全域推进海绵城市建设,消除城市内涝,打造宜居环境[J].环境科学学报,2020,40(10):3481-3483.
[2] 王路平,曾磊,刘俊,等.基于内涝防治目标的雨水调蓄池设计[J].水电能源科学,2021,39(2):47-50.
[3] 杨薇,南军,孙德智,等.遗传算法在水资源与水环境研究中的应用综述[J].水资源保护,2007,23(1):13-16,34.
[4] GARCíA L,BARREIRO-GOMEZ J,ESCOBAR E,et al.Modeling and real-time control of urban drainage systems:A review[J].Advances inwater resources,2015,85:120-132.
[5] MULLAPUDI A,LEWIS M J,GRUDEN C L,et al.Deep reinforcement learning for the real time control of stormwater systems[J].Advances in water resources,2020,140:103600.
[6] 杨默远,潘兴瑶,刘洪禄,等.基于文献数据再分析的中国城市面源污染规律研究[J].生态环境学报,2020,29(8):1634-1644.
[7] 王梦迪.基于海绵城市的雨水调蓄池优化设计研究[D].合肥:合肥工业大学,2021.
[8] 齐明.城市初期雨水调蓄池布局优化和功能强化研究[D].哈尔滨:哈尔滨工业大学,2020.
[9] 王佼.控制面源污染的分流制雨水调蓄池优化研究[D].太原:太原理工大学,2015.
[10] 袁翼,潘郴,杨长河,等.基于MIKE+的南昌市朝阳片区内涝定制化动态模拟软件开发[J].水电能源科学,2024,42(10):44-49.
[11] 周毅,周云笛.初期雨水调蓄池单位面积调蓄深度数值模拟[J].水电能源科学,2024,42(4):43-46.
[12] 吴海涛,闫爱萍,曾祥国,等.分流制排水系统中组合式初雨调蓄池的设计与优化[J].中国给水排水,2020,36(12):106-110.
[13] 陈丰.城市排水系统内涝与溢流控制性能评价与优化研究[D].北京:清华大学,2016.
[14] 陆浩.海绵城市雨水管理优化与监测系统设计[D].吉林:东北电力大学,2020.
[15] ZHANG Y X,JIANG C B,HAN Q H,et al.Coupling simulation of pipeline nodes - Storage tank linkage in urban high-density built-up areas using optimization model[J].Journal of environmental management,2024,357:120850.
[16] HE S N,CHEN W X,MU X P,et al.Constrained optimization model of the volume of initial rainwater storage tank based on ANN and PSO[J].Environmental science and pollution research,2020,27(17):21057-21070.
[17] WANG M M,SUN Y X,SWEETAPPLE C.Optimization of storage tank locations in an urban stormwater drainage system using a two-stage approach[J].Journal of environmental management,2017,204(Pt 1):31-38.
[18] CIBIN R,CHAUBEY I.A computationally efficient approach for watershed scale spatial optimization[J].Environmental modelling & software,2015,66:1-11.
[19] 宋翠萍,王海潮,唐德善.暴雨洪水管理模型SWMM研究进展及发展趋势[J].中国给水排水,2015,31(16):16-20.
[20] BILODEAU K,PELLETIER G,DUCHESNE S.Real-time control of stormwater detention basins as an adaptation measure in mid-size cities[J].Urban water journal,2018,15(9):858-867.
[21] 钟晔,紫檀,甄晓玥.实时控制系统提升调蓄池处理能力的模拟研究[J].给水排水,2021,57(4):144-150.
[22] GABORIT E,MUSCHALLA D,VALLET B,et al.Improving the performance of stormwater detention basins by real-time control using rainfall forecasts[J].Urban water journal,2013,10(4):230-246.
[23] LIGUORI S,RICO-RAMIREZ M A,SCHELLART A N A,et al.Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments[J].Atmospheric research,2012,103:80-95.
[24] SUN C C,JOSEPH-DURAN B,CEMBRANO G,et al.Advanced integrated real-time control of combined urban drainage systems using MPC:Badalona case study[C]//EPiC Series in Engineering,2018.
[25] LUND N S V,BORUP M,MADSEN H,et al.CSO reduction by integrated model predictive control of stormwater inflows:A simulated proof of concept using linear surrogate models[J].Water resources research,2020,56(8):e2019WR026272.
[26] 徐军杨,张奇伟,蔡鹏,等.基于深度信念极限学习机与卷积优化算法的洪水预报方法[J].水电能源科学,2024,42(8):48-52.
[27] VEZZARO L,GRUM M.A generalised Dynamic Overflow Risk Assessment (DORA) for Real Time Control of urban drainage systems[J].Journal of hydrology,2014,515:292-303.
[28] VEZZARO L,CHRISTENSEN M L,THIRSING C,et al.Water quality-based real time control of integrated urban drainage systems:A preliminary study from Copenhagen,Denmark[J].Procedia engineering,2014,70:1707-1716.
[29] ZHANG M F,XU Z W,WANG Y M,et al.Evaluation of uncertain signals’ impact on deep reinforcement learning-based real-time control strategy of urban drainage systems[J].Journal of environmental management,2022,324:116448.
基本信息:
DOI:10.20040/j.cnki.1000-7709.2025.20241771
中图分类号:TU992;X52
引用信息:
[1]蒋春博,韩巧慧,张阳烜等.雨水调蓄池优化设计与实时控制综述[J].水电能源科学,2025,43(08):23-26+36.DOI:10.20040/j.cnki.1000-7709.2025.20241771.
基金信息:
陕西省秦创原“科学家+工程师”队伍建设(2022KXJ-115)